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I. Introduction 

Stochastic volatility (SV) models appeared relatively early in the valuation of derivative 

securities, before Finance academics and professionals recognized that the seminal Black-

Scholes-Merton (BSM, 1973) model, based on constant volatility diffusion dynamics for the 

evolution of a derivative-underlying security, was no longer working. Indeed, in the year 1987 at 

least four journal articles appeared in the literature, presenting SV models that attempted to relax 

the constant volatility of BSM.2 Surprisingly, this outburst of interest in extending the BSM took 

place soon after an important empirical article by Rubinstein (1985) had concluded that BSM 

was an adequate option valuation tool. Nonetheless, the SV studies were prescient, since 1987 

was also the year of the major stock market crash that effectively signified the end of BSM. 

Indeed, in his 1994 presidential address Rubinstein reported that assigning a common volatility 

to the observed options prices of S&P 500 index options of a given maturity produced errors of a 

magnitude that made him conclude that the constant volatility BSM was no longer an 

approximately acceptable option model. Since that time SV models have become standard 

components of empirical index option research, often combined with independent Poisson 

jumps, the SVJ models. The list of references is very large, and will be reviewed further on in 

this section.  

What has not changed very much during this long time interval is the transition from the index 

return distribution based on parameter estimates extracted from the observed returns (the 

physical or P -parameters), to the distribution needed for the pricing of derivatives, the risk 

neutral or Q -distribution. Asset pricing theory stipulates that such a transition must satisfy a set 

of relations that reflect the simultaneous no arbitrage equilibrium (NAE) of the index and option 

markets, the dominant paradigm in empirical options research. This equilibrium involves the 

pricing kernel, identified with the aggregation of the marginal utilities of the traders in these two 

markets. If the kernel is known the equilibrium relations yield the Q -distribution from the 

estimated P -parameters. Since the kernel is not known, the Q -parameters are extracted from the 

observed option market prices. This extraction involves two assumptions, that the option 

equilibrium prices are unique and observable (a frictionless market) and that the option 

equilibrium is efficient, in the sense that the observed prices are “correct”. Both assumptions are 

questionable, and their relaxation forms the central topic of this paper, in which the transition 

from the P - to the Q -distribution does not involve option market data.  

We find that this transition is uniquely defined when we use the frictionless stochastic 

dominance (SD) approach for a very wide class of SV models that covers all those that have 

appeared in practice. Similarly, we find that in combining SV with an independent jump process 

and transforming it into an SVJ model of ex-dividend index return dynamics the transition from 

the P - to the Q -distribution defines two limiting distributions that contain all SD-admissible 

option values. These novel theoretical results allow us to assess whether any frictionless 

equilibrium consistent with the estimated parameters of the P -process can be extracted from the 

observed option market data. Although there are no empirical applications in this paper, we use 

                                                           
2 See Hull and White (1987), Johnson and Shanno (1987), Scott (1987), and Wiggins (1987).   
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P -parameters from existing studies to illustrate the difference in option values between our SD 

approach and the empirically fitted kernels to observed option market values. Note that the only 

additional assumption of SD vis-a-vis NAE is the monotonicity of the pricing kernel, which is 

discussed further on in this section. 

SD appeared at about the same time as the SV studies, in a series of articles that started with 

Perrakis and Ryan (1984), Levy, (1985), Ritchken (1985), Perrakis (1986) and Ritchken and Kuo 

(1988). These studies adopted a discrete time methodology, unlike SV, even though they 

assumed a frictionless option market. The SD approach was subsequently extended to option 

markets with frictions, theoretically by Constantinides and Perrakis (2002, 2007) and empirically 

by Constantinides, Jackwerth and Perrakis (2009), Constantinides et al (2011), Constantinides, 

Czerwonko and Perrakis (2020), Post and Longarela (2021), and Arvanitis, Post and Topaloglou 

(2021). Strikingly, these empirical studies are to our knowledge the only empirical studies in 

index option markets that recognize the option bid and ask prices and do not manipulate the data 

by imposing a frictionless market format.  

On the other hand, SD has not had any impact on option research in the frictionless world, where 

most of the empirical studies on index options have taken place. It was relatively recently 

extended to continuous time constant volatility and state-dependent volatility diffusion, and 

constant volatility jump diffusion in models without frictions. It forms, therefore, an alternative 

paradigm to NAE for option valuation both in the frictionless world and in the presence of 

frictions for these types of P -distributions.3 This paper, by extending SD frictionless option 

pricing to SV and SVJ P -dynamics, completes this paradigm and opens up new avenues for 

empirical option research. Our setting is quite flexible and general and admits an ex-dividend 

risk premium for the index that may be constant, proportional to volatility, proportional to 

variance, or any other function of volatility. It also recognizes several well-known empirical 

features of index option research such as the leverage effect, and allows when combined with 

jumps different risk premiums for jumps depending on option maturity. In other words, the SD 

approach is an efficient method to achieve dynamically complete frictionless option markets 

under SV, as well as tight option bounds under general conditions for SVJ.   

To our knowledge, such an endogenous derivation has never been done theoretically in NAE 

models under such general conditions. In the Heston (1993) SV model the kernel was derived 

twenty years after it first appeared only under a risk premium that is linear in the variance, by 

Christoffersen, Heston and Jacobs (2013).4 Attempts to derive the Q -distribution for the SV 

model in the mathematical finance literature by Romano and Touzi (1997) and Frey and Sin 

(1999) were not particularly successful. The first one used the option market for this purpose 

while the latter derived option bounds that were based on arbitrarily set bounds on volatility and 

have never, to our knowledge been used empirically. Similarly restrictive were stylized 

equilibrium models in an economy in which the driving component was the optimal portfolio 

selection of a representative investor who maximized the discounted additive expected utility of 

the constant relative risk aversion (CRRA) type. This was done by Bates (1991) for options with 

                                                           
3 See Perrakis (2019) and Ghanbari, Oancea and Perrakis (2021).  
4 As Jones points out (2003, p. 181), the Heston model “is incapable of generating realistic returns behavior”.  
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constant volatility jump diffusion, and by Amin and Ng (1993) for options separately under SV 

and under constant volatility jump diffusion. Unlike SD, the derived results in these two studies 

are not preference-free, insofar as the same relative risk aversion (RRA) of the representative 

investor enters into the expressions that yield the Q -parameters as functions of the P -

parameters.  

The fact that the same RRA value is used for all maturities and degrees of moneyness of the 

options is problematic, since it is contradicted by one of the earliest empirical post-BSM studies 

on S&P 500 index options, by Bakshi, Cao and Chen (BCC, 1997). In that study various nested 

models of Q -dynamics were fitted to option market data, disaggregated by categories of 

maturity length and degree of moneyness. The results of that much-cited empirical study point 

very clearly to a maturity effect in the consistency of the estimates with each other and the ability 

to project out-of-sample option values. As the authors state (p. 214), “short term 

options…present perhaps the greatest challenge to any alternative [to the BSM] option pricing 

model”. Further, the authors point out (p. 2029) that their estimates also imply a degree of 

moneyness effect, in the sense that all of their models systematically overprice OTM calls while 

they systematically underprice in-the-money (ITM) calls, with respect to the observed out-of-

sample prices of these same options one day ahead. These maturity and moneyness effects imply 

that any risk neutralization based on a NAE model with a CRRA representative investor is not 

appropriate for index option valuation.  

These empirical problems of the models used to represent the index options have not disappeared 

in the twenty-four years since the Bakshi, Cao and Chen study was published, something that is 

perhaps not surprising since the main features of the models and the structure of the empirical 

work have changed very little during that time. All of them conform to the NAE framework. The 

main methodological change vis-à-vis the BCC study has been the simultaneous estimation of 

the P - and Q -distributions, respectively from the underlying and the option markets, generally 

assumed of a similar form for mathematical tractability. Studies that have applied the SVJ model 

to S&P 500 options include, in addition to those already mentioned, Andersen, Fusari and 

Todorov (2017), Bates (1996, 2003, 2006), Bondarenko (2003, 2014),  Broadie, Chernov and 

Johannes (2007, 2009), Chen, Joslin and Ni (2019), Eraker (2004), Eraker, Johannes and Polson 

(2003), Pan (2002) and Ziegler (2007).5  Another category of empirical studies starting with 

Jackwerth and Rubinstein (1996) and Jackwerth (2000) extracts the pricing kernel as the ratio of 

the Q - to P -densities, by fitting these densities numerically and non-parametrically to the 

observed index returns and the option midpoints without assuming specific forms for the 

dynamics.  

The general flavor of these empirical studies can be judged by the fact that several of them have 

been devoted to debating two related subjects, on which the empirical evidence is contradictory 

and contentious, both of which appeared for the first time in the aforementioned Jackwerth 

                                                           
5 A parallel set of empirical studies on these same options have replaced SV with discrete-time GARCH (General 

Autoregressive Conditional Heteroscedasticity) models, also combined with a jump process. These are also 

amenable to an SD formulation but present different challenges from SV and will not be examined in this paper.  
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(2000) study. The first one is that OTM put options have been “too expensive”, in the sense that 

adopting short positions in them is a highly profitable strategy. The second and much more 

important controversial Jackwerth finding is that the shape of the kernel, which was monotone 

decreasing in the index value, changed shape and became at times increasing after the 1987 

crash. Empirical studies since then have confirmed or refuted both Jackwerth results, especially 

the case of the possibly non-monotonicity of the kernel, which was confirmed and refuted in two 

studies that appeared simultaneously in 2018 and refuted again in another study that appeared in 

2020.6 These contradictory studies’ results for both OTM put overpricing and kernel 

monotonicity were analyzed and summarized in Perrakis (2022) and will not be repeated here. It 

suffices to state that these results came out of the same data and the same general NAE class of 

models and differed only in the handling of the option data and the estimation methodology. 

They are the best justification for the SD approach, to which we now turn.  

The fact that SD can achieve results in solving a problem that has persisted for so many years in 

the dominant NAE approach of valuing derivative securities is due to its differing set of 

assumptions. As argued in Perrakis (2022), NAE is equivalent to first order stochastic dominance 

in our setup, while in all its applications to derivatives pricing SD is second order dominance or 

higher. Indeed, in several of the derivations of the BSM model the derivatives valuation 

methodology has used either the replication of the derivative with the underlying and a riskless 

security, or the construction of a continuously rebalanced perfectly hedged portfolio containing 

these two securities plus the option. Violations of this replicating value imply that a long or short 

position in the derivative yields a first degree dominance over the replicating portfolio. These 

replication techniques are, however, unable to yield results when the P -dynamics go beyond 

simple diffusion, even in frictionless markets.7 

In frictionless SD models the basic assumption is that a generic risk averse investor holds an 

optimally selected portfolio of the index and a riskless bond and adds a marginal position in a 

single call or put option. The option, whether short or long, should not create second degree 

stochastically dominant positions, implying that its price should lie within bounds. These bounds 

depend on the probability distribution of the ex-dividend index returns, which is taken as given, 

but are otherwise model free. The investor portfolio composition assumption appears to be 

restrictive, unless the index is assumed to be the market portfolio.8 This is also what was 

assumed in the aforementioned studies of Bates (1991) and Amin and Ng (1993), with the 

important difference that the expected ex-dividend return of the index is determined 

simultaneously together with the price of the option in the portfolio choices of a CRRA investor. 

The SD method is formulated in discrete time, but the bounds can be applied recursively for any 

horizon length till option maturity. If applied to the Euler discretization of the continuous time 

index returns it can derive the corresponding Q -distributions by letting the time partition go to 0. 

                                                           
6 See Babaoglu et al (2018), Linn, Shive and Shumway (2018), and Barone-Adesi et al (2020).  
7 They are also unable to accommodate proportional transaction costs in trading the underlying, as shown in a long 

list of references surveyed in detail in Perrakis, (2019, pp. 90-96).   
8 The assumption is also justified by the large and drastically increasing share of index-holding investors, as 

documented by Bogle (2005) and Charles (2017).  
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This exercise was carried out in Perrakis (2019, Chapter 2), and it was shown that the 

dependence on the index risk premium disappears under constant volatility and state-dependent 

volatility diffusion, for which the two bounds converge respectively to the BSM option price and 

the Constant Elasticity of Variance (CEV) price. By contrast, in the presence of jumps the 

bounds at the limit do not depend on the premium but remain distinct and generate an interval of 

admissible option prices.  

The main advantage of frictionless SD vis-à-vis NAE is the fact that it derives option values or 

bounds for these values that do not require option market data. The option market is an 

intermediated market, in which there are two distinct sets of traders, market makers or dealers 

and end users. To our knowledge, this market has never been modeled except in a trivial sense, 

by Garleanu, Petersen and Poteshman (2009) and more recently by Fournier and Jacobs (2020), 

with the bid-ask spread ignored in the first study and assumed exogenous in the second. Since 

the dealers possess information that is not available to end users, it is a legitimate question to ask 

whether the two sets of traders can be lumped together. We also know that the option market is 

partially segmented between puts and calls, as Constantinides and Lian (2020) have shown, 

implying that put-call parity does not hold.   

In this paper we derive the SD bounds for the discretized version of a large class of bivariate SV 

models that includes all those that have appeared in the various NAE studies. In the principal 

result it is shown that in all cases the bounds tend at the limit to a single value of the option, thus 

demonstrating the ability of SD to derive results in the SV model without further assumptions, 

unlike the NAE methodology. The model is then transformed into a SVJ-SD model by including 

independent Poisson jumps, in which case at the continuous time limit the SD bounds tend to 

two different values and generate an interval of admissible option prices.  

Although we do not carry out any empirical work in this paper, we use these SV-SD values and 

SVJ-SD bounds in order to evaluate their consistency with the extracted SV and SVJ parameters 

from published studies that use the NAE paradigm with SV or SVJ dynamics. Since in such 

studies the Q -parameters are extracted by fitting an SV or SVJ distribution to the observed bid-

ask midpoint, this step is equivalent to examining whether that assumed equilibrium option value 

is consistent with the corresponding assessed P -dynamics. The motivation for this last step 

stems from Jouini and Kallal (1995), who examine market equilibrium in the presence of 

frictions for any type of financial assets and question (p. 181) the extraction of the frictionless 

risk neutral price of an asset from the observed bid-ask spread.9 Preliminary results with short 

term options show that in a very large number of cross sections there is no overlap between the 

SD bounds and the observed bid-ask spread. This raises questions about the universally adopted 

assumptions for the intermediated market.   

In the next section we formulate the SD model and present the option bounds for any discrete 

type of P -distribution, including the discretized SV and SVJ dynamics. Section 3 contains the 

principal result of this paper, the proof that the SV bounds converge to a single value, and 

                                                           
9 See also the theoretical papers by Bizid et al (1999), Jouini (2003), and Bizid and Jouini (2005), whose approach 

has several common points with SD. 
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compares the SV-SD results using the formulation and P -parameter values of existing studies 

under the NAE paradigm with the extracted Q -distributions of these same studies. Section 4 

presents SVJ-SD bounds as extensions of the constant volatility jump diffusion SD bounds and 

presents implications for future empirical research that would exploit the inconsistency of the 

frictionless SD results with the observed option market prices. Section 5 concludes. 

II.     The General Model and the SD Bounds10 

Let tS and K denote, respectively, the underlying index and option strike prices at any time 

0,1,...,t T prior to option expiration in discrete time formulation. If t denotes the length of the 

time partition then in a single trading period ( , )t t t  the underlying asset with current price tS

has an ex-dividend rate of return t t t
t t

t

S S
z

S





 . The riskless asset’s return per period is equal 

to 1 ( )r tR e r t o t      . Hereafter we denote by Index Trader or IT the generic risk averse 

investor holding the index and the riskless asset and by Option Trader or OT the same investor 

who also holds a zero net cost option or option portfolio.  

Except for the trivial case where t tz  takes only two values the market for the index is 

incomplete in a discrete time context. The valuation of an option in such a market cannot yield a 

unique price. Our market equilibrium is derived under the following set of assumptions that are 

sufficient for our results:  

There exists a utility-maximizing risk averse IT class of investors in the economy  

These investors are marginal in the option market 

 The riskless rate is non-random                        

The IT investors optimize their portfolio holdings recursively over a horizon longer than the 

option maturity, at the end of which they maximize the expected utility of terminal wealth. The 

first order conditions of this maximization yield the pricing kernel ( )t tY z  , the state-contingent 

discount factor or normalized marginal rate of substitution of the trader evaluated at her optimal 

portfolio choice. Assuming no transaction costs and no taxes, the following relations characterize 

market equilibrium in any single trading period ( , )t t t , 

 

1[ ( ) ] ,   [(1 ) ( ) ] 1 t t t t t t t tE Y z S R E z Y z S

     .    (2.1) 

       

Because of the assumed risk aversion and portfolio composition of our traders it can be easily 

seen that the pricing kernel ( )t tY z  would be monotone non-increasing) in the index return t tz 

for every 0,1,...,t T . These market equilibrium assumptions are quite general, insofar as they 

allow the existence of other investors with different portfolio holdings than the trader, although 

their application to option valuation implicitly assumes that these other investors will play a 

                                                           
10 The material in this section summarizes results from Perrakis (2019, pp. 19-29). 
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limited role in the option market. 

For univariate diffusion P -distributions the equilibrium conditions can be applied to the 

following ex-dividend return, the Euler discretization of a general diffusion process 

( , ) ( , )t t t tz S t t S t t       .       (2.2) 

The random term  has a distribution ( )F  of bounded support, mean zero and variance one. 

Both the mean rate of return and its volatility are allowed to be functions of time and current 

asset price. The SD bounds, however, do not depend on the univariate diffusion assumption and 

can be expressed recursively in terms of a general distribution ( )t t tP z S
, which may be a 

convolution of the diffusion and an independent jump component, or may include other 

observable factors unrelated to the index return. In such a case, if we assume as is reasonable that 

1 [ ]t t tE z S R   there exist upper and lower bounds ( )t tC S and ( )t tC S for European options 

given by the following recursive expressions if the option is assumed without loss of generality 

to be a call. 

 

( ) ( ) ( )

1
( ) [ ( (1 )) ]

1
( ) [ ( (1 )) ]

t

t

T TT T T

U
t t tt t t t t

L

t t tt t t t t

C S C S S K

C S E C S z S
R

C S E C S z S
R



 

 

  

 

 

 .     (2.3) 

In (2.3) tU
E and tL

E denote respectively expectations taken with respect to the following 

distributions 

            

min,

min,

min, min,

1

( )

( ) 1

( )

* *

( ) with probability  
( )

1 with probability

( ) ( | , ),  (1 , )

t t

t t t t

t t

t t t t t t

R z

t t t E z z

t t t E z R

z E z z

t t t t t t t t t t t t t t t

P z S
U z

L z P z S z z E z S z z R



 



  

 

 

  



    




 
 

    

.   (2.4) 

The distributions ( )t t tU z  and ( )t t tL z  are both risk neutral and yield bounds on European option 

values through SD by successive integrations of the payoff as in (2.3), provided the option value 

is convex with respect to the price of the underlying, as it generally happens when the payoff is 

convex. SD can still derive bounds on derivatives when their payoff is not convex, but there are 

no closed form expressions for the bounds and the derivations are numerical.11  

These SD recursive relations are sufficient to generate a single price for an option under SD for 

any state- and time-dependence of the mean and volatility of the discretized diffusion shown in 

(2.2), since the bounds can be shown to tend to the same value for 0t  , given their 

dependence on a single random factor. In the case of SV, however, the discretization (2.2) is not 

sufficient, since the model is a bivariate diffusion. In fact, convergence holds here as well, 

                                                           
11 See Perrakis and Boloorforoosh (2018) for an example of such derivatives.  
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producing a single option value, as shown in the following section. 

III. The SD bounds Under Stochastic Volatility  

 

We adopt a generalized formulation of the SV model, which to our knowledge includes the SV 

component of all the models that have appeared in the literature, most often combined with 

jumps. As in these models, neither the returns nor the volatility dynamics depend on tS . Letting 

V denote the variance of the return, the P -dynamics of the index return are as follows 

1

2 1 2

[ ( )] ( ) ,   

( ) ( ) ,  ( )

t

t

dS
r V dt V dW

S

dV V dt V dW dW dW V dt

 

  

  

  

.    (3.1) 

The discretization of these dynamics is now given by 

2

[ ( )] ( ) ,   

( ) ( )[ ( ) + 1 ( ) ]

t t t t t t

t t t t t t t t t t t

z r V t V t

V V V t V V t V t

  

     

 

  

    

      
.    (3.2) 

As before, the return shocks t t  have a distribution ( )F  of bounded support, zero mean and 

unitary variance, while a distribution ( )G  with the same properties also holds for the 

independent idiosyncratic variance shocks t t  . The correlation coefficient ( )tV , the so-called 

leverage effect, has consistently been shown to be negative, as it will be assumed from now on. 

Hence, the covariance matrix at t of the vector ( , )t t t tz V   is equal to 

 

2

2

( )                   ( ) ( ) ( )
( )

( ) ( ) ( )                   ( )

t t t t P

t

t t t t

V V V V
t V t

V V V V

   

   

 
    

  

.     (3.3) 

The next step is the derivation of the equilibrium relation (2.1) consistent with the discretized 

index dynamics (3.2). Here the kernel has the form ( , )t t t tY z V  , a function of both return and 

volatility. To apply SD we need conditions under which the function 

[ ( , ) ] ( )t t t t t t t t t tE Y z V S Y z     is monotone non-increasing. As noted in the introduction, this 

issue is controversial and has been debated for more than 20 years, in studies that use SV or 

GARCH P-dynamics but reach diametrically opposite conclusions even though they used 

virtually identical time series data. There should not have been any controversy, since the 

theoretical arguments for monotonicity are compelling, and the fact that the non-monotonicity 

claims are based solely on empirical work should have raised a debate about that work, rather 

than non-monotonicity.12 As Wiggins (1987, pp. 356-358) has argued by citing Merton (1971), 

explicit forms of ( , )t t t tY z V  exist only for time-additive constant relative risk aversion 

                                                           
12 See Perrakis (forthcoming, 2022) for an extensive presentation of the debate. Christoffersen, Heston and Jacobs 

(2013, pp. 1966-1967) formulate a non-monotone kernel in the Heston (1993) SV and in the GARCH Heston and 

Nandi (2001) models without a formal theoretical justification, but also state that the risk neutral SV dynamics have 

identical functional forms for both monotone and non-monotone versions of the SV kernel.   
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(CRRA) utilities, in which the value function of the representative investor consists of the 

product of two terms, one involving the volatility and the other the index return. The term 

involving the volatility is increasing (decreasing) if  the relative risk aversion (RRA) coefficient 

is greater (less) than 1. Since the empirically most relevant case is an RRA greater than 1, the 

term that contains the volatility is increasing in t tV  , implying by the leverage effect that the 

function ( )t t tY z 
is non-increasing. Further, Beare (2011) shows on the basis of a result 

originally proven by Dybvig (1988), that when the kernel is not counter-monotone any investor 

can replicate at a lower cost the index with option portfolios. If the investor then replaces in her 

holdings the index by the option portfolio there is first degree stochastic dominance and a 

violation of the key no arbitrage assumption. This replication is particularly easy for the 

Christoffersen, Heston and Jacobs (2013) U-shaped kernel for GARCH dynamics, where it can 

be shown that with such a kernel a portfolio of a long call, a short put with the same strike price 

and a long position in the riskless asset overvalues the index and violates no arbitrage.  

At T t  the distribution ( )T T tP z S  can be easily extracted from the first line of (3.2) given

( )F  . Hence, the option boundary distributions (2.4) apply directly and the option bounds are 

( , ) [( ) ]U
T t T t T t T t TC S V E S K 
     and ( , ) [( ) ]L

T t T t T t T t TC S V E S K 

     . However, while 

the option payoff ( )TS K  is obviously convex and does not involve the idiosyncratic volatility 

shock T , none of these properties holds for the option value at any t T t  . We apply 

induction, assuming that ( , )t t t t t tC S V    and ( , )t t t t t tC S V    are known and ( )t t tY z 
is non-

increasing, and seeking to define bounds at t such that ( , ) ( , ) ( , )tt t t t t t t tC S V C S V C S V  .  These 

bounds must satisfy the following equilibrium problem.   

1

{ [ ( ) ( , )]},   { [ ( ) ( , )]}

subject to

[ ( ) ] ,   [(1 ) ( ) ] 1 

t tt t t t t t t t t t t t t t t t t tY Y

t t t t t t t t t t t t

Max E Y z C S V Min E Y z C S V

E Y z S R E z Y z S

      



    

 ,   (3.4) 

where the kernel ( )t t tY z 
is non-increasing.  

In what follows we assume initially that the Q -distribution is such that the option value ( , )t t tC S V

is convex in tS . Conditions for such convexity were derived in Bergman, Grundy and Wiener 

(1996), and the P -dynamics in (3.1) satisfy them. Our assumption will be justified if our derived 

Q -dynamics also satisfy them. In the program (3.4) the dependence of ( ( ), ( , ))t t t t t tC S V    

on the random shocks and  obviously carries over in its bounds. We also assume without loss 

of generality that the distribution of the shock   is discrete, ( , ),  1,...,i ip i n   in ascending 

order. Then we can prove the following result. 
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Lemma 1: Under the induction hypothesis, at every t T t   we have

( , ) ( , ) ( , )t t t t t t t t tC S V C S V C S V  , where ( , )t t tC S V and ( , )t t tC S V are convex and do not depend 

on the volatility shock   and are given by 

( , ) [ ( ( ), ( , )) ( )

( , ) [ ( ( ), ( , )) ( )

L

t tt t t t t t t t

U

t t t t t t t t t t

C S V E C S V dG

C S V E C S V dG









   

   

  

  









.     (3.5) 

In (3.5) the expectations with respect to the shock  within the integrals are given by the 

following expressions for each value of the idiosyncratic volatility shock  , and [ , ]   is the 

support of that shock. 

1

1

1

1 1

1

1

1

1

[ ( ( ), ( , ))] ( ( ), ( , ))

(1 ) ,  1,..., ,

ˆ1
,  0,  2,..., ,  ,  

ˆ ˆ

ˆ ˆ ˆ1+ 1 ,  

i h
L

t t t tt t t t t i t t i t t i

i

i i
i j h j h

j j

j j

i h
h ij h

h h
j

j

L L L

h h i t

E C S V l C S V

p p
l i h

p p

p R z
l l i h n

z z
p

z R z z E

     

 



 

    



  

 

 









   

 
    



   



 



1
ˆ ˆ[ ( ) ],  (1 ) 1L L L

j h hz j i z z R      

,     (3.6) 

and similarly for the upper bound 

1

1 1

1

1 1

[ ( ( ), ( , ))] ( ( ), ( , ))

1 [ ]
(1 ),    (1 ) ,   2,..., ,    as in (2.4),

[ ]

ˆ ˆ[ ],   (1 ) [ ] (1 )

i n
U

t t t t t t t i t t t t i t t i

i

t t t
i i

t t t

U U U

i t j n t t t

E C S V u C S V

E z R
u p u p i n

E z z

z E z j i z z E z z

     

   

   



     











 
      



      



1R 

   (3.7) 

Proof: See Appendix A. 

The following expressions also follow directly from (3.6)-(3.7) and (A.1)-(A.2). 

1

1, ,

1

, 1,

ˆ ˆ( , ) [ ( ) (1 ) ( )] ( ),  

ˆ ˆ
( , ) [ ( ) (1 ) ( )] ( )

h t t h t tt t t

t t t n t t t t

C S V R C C dG

C S V R C C dG









    

    



  



 

  

  





.     (3.8) 
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Observe that the two volatility shocks  and  have joint distribution ( ) ( )F G  , which implies 

that the order of the estimations in (3.5)-(3.7) can be reversed, by integrating out the 

idiosyncratic volatility shock . This may present some advantages in implementing the 

algorithm, by avoiding corner solutions in intermediate steps.   

We have thus shown that in discretized time the option value is bound by two convex functions 

that do not depend on  , derived recursively from a monotone pricing kernel. The last and most 

important result of this section has the following form.13 

Proposition 1: For any t T and for 0t   the option bounds for the SV model (3.1), defined in 

(3.5) and (3.8), converge to the unique option price given by the expectation of the payoff with 

the following Q -dynamics. 

1

2

1 2

( ) ,   

( ) ( ) ( )
( ) ( )[ ( ) + 1 ( ) ] 

( )

Qt
t

t

Q Qt t t
t t t t

t

dS
rdt V dW

S

V V V
dV V dt V V W V W

V



  
   



 

 
    
 

.  (3.9) 

Observe14 that 1 1 2 2

( )
,   

( )

Q Qt

t

V
dW dW dt dW dW

V




   . 

Proof: For any t T  define t t tV V V    and let 1R r  . Consider the discretization (3.2) of 

the P -distribution, for which we have 
( )

( )

t tP

t

z r V
E t

VV





    
    

   
. Then for the two Q -bounds, 

for which we have [ ]Q

t t tE z r t    , we must also have ( ) [ ] ( )Q

t t tV E V t      . Taking the 

Q -expectation of
2( ) ( )[ ( ) + 1 ( ) ]t t t t t t t tV V dt V V t V t             and replacing

[ ]Q

t t tE  
 by its equal, we find that ( ) ( ) ( )

( )
( )

t tQ

t

r
z

E tV V V
VV

V

  






 
        

  

. 

For the covariance matrix ( )Q

t V  , the equivalent of (3.3), the proof of convergence differs 

between the upper and the lower bound. The full proof is available in Oancea and Perrakis (2014, 

appendix) and will only be summarized here. For the upper bound it can be shown that the 

parameter   defined in (3.7) tends to 
min

( )

( )

V
t

V



 
  . This implies, since [ ] 1PVar   , that 

                                                           
13 An alternative proof, available from the authors on request, derives the Q-dynamics (3.9) by a linear programming 

(LP) approach without using Lemma 1.   

14 In other words, 1 1

( )
[ ] ,   [ ] 0

( )

P Q Q Qt
t t

t

V
E dW dt E dW

V




  . 
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2 2 2

0 min

min min

( ) ( )
lim [ ] ( ) 1 ( ) ( )

( ) ( )

U

t t t t

V V
Var z V t t t V t o t

V V

 
  

   
  

  
           

  
. For 

the lower bound the proof is simpler when the distribution ( )F  is continuous, as assumed in 

(2.4). In such a case we obviously have

min

( ) 1
[ ] ( )

( ) ( )

L

t t t

V
E t dF

V F






  

 
      , where 

max( )t   . It can be shown that 0lim [1 ( )] 0t F     , from which it turns out that 

0lim ( ) 1L

t tVar    . Hence, for 0t  and for both covariance matrices we have 

( ) ( )Q P

t tV V  , and by the Lindeberg condition, observing that
1

QdW is a martingale under the

Q -distribution, we get (3.9). Since these dynamics justify the Bergman, Grundy and Wiener 

(1996) conditions for convexity, the initial convexity assumption is justified, QED.  

For comparison purposes, we rewrite (3.1) by decomposing the volatility shocks into two 

uncorrelated Wiener processes 

 
1

2

1 2 1 2

[ ( )] ( ) ,   

( ) ( )[ ( ) + 1 ( ) ],  [ ] 0

t
t t

t

t t t t t

dS
r V dt V dW

S

dV V dt V V dW V dW E dW dW

  

   

  

   

  .  (3.1)’ 

This allows us to formulate the following important result, whose proof is obvious from (3.1)’ 

and (3.9) if we define ( , )P QdV dV respectively from these dynamics, in which case the realized 

variances over an interval [ , ]t T  are given by ( ) ,  ,

T

I

t

t

E dV d I P Q   . 

Corollary: The volatility spreads over the maturity of an option are given by 

( ) ( ) ( )
ˆ( )  ( )  ( ( ) ( ))

( )

( )  ( )) ( ))

T T T T

Q P

t t

t t t t

T T T

P

t

t t t

V V V
E dV d E dV d V V d d

V

E dV d V d V d

  
   



  

  
     



    

  

 
   

  

.  (3.10) 

These volatility spreads are obviously directly related to the traded variance swaps, except for 

the fact that they do not require option market data. They can also be compared to the results of 

Section 4 of Bakshi and Madan (2004), who study volatility spreads in a general setup that does 

not assume a particular form of P-dynamics for the index. Instead, they extract their results from 

an equilibrium formulation with a CRRA investor and a quadratic expansion in Taylor series of 

the pricing kernel. By contrast, in our results the derivation of the Q-dynamics are uniquely 

defined from the P-dynamics and do not require further information. 

The last result of this section derives the pricing kernel from the P- and Q-dynamics of 

Proposition 1. This result is not necessary, since Proposition 1 derived independently the risk 

neutral dynamics, but is presented here for comparison purposes, since the kernel is fundamental 
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for many studies that use the NAE methodology and derive the Q-distribution from the option 

market by fitting a kernel that reconciles the physical and risk neutral dynamics. It is expressed 

by the following result, which uses the derivations of Proposition 1 to extract the kernel. 

Proposition 2: The stochastic volatility pricing kernel for the P- and Q- dynamics shown in (3.1’) 

and (3.9) respectively is given by the following relation 

( ) ( )1ˆ ˆ( ) exp[ ( )(2 2 )]
ˆ ˆ2

( ) ( )1ˆ ˆln ( )(2 2 )
ˆ ˆ2

P P Pt t
t t

P Pt t

V V
Y z z

V V
Y z

 


 

 


 

    

  

,     (3.11) 

Where 

( ) ( ) ( ) ( )
ˆ ˆ ˆ,   

ˆ ˆ( ) ( ) ( )

( ) ( )
0.5[ ( ) ( ) ( )]

( ) ( ) ( )

ˆ[ ( )] ( ) ( ) ( ) ( ) 0.5[ ( ) ( ) ( )]

ˆ ˆ[ ( ) ( ) ( )]

ˆ

( )

P Q Pt t t t

t t t

P t t
t t t

t t t

t t t t t t t t

t t t

Q

t

V V V Vz
z z z z

V V V

r V V
V V V

V V V

r V V V V V V V V

V V V

r

V

   

    

 
   

  

        

    







   


    

  




 
( )

0.5[ ( ) ( ) ( )]  
( ) ( )

ˆ ˆ( ) ( ) ( ) ( ) 0.5[ ( ) ( ) ( )]
 

ˆ ˆ[ ( ) ( ) ( )]

t
t t t

t t

t t t t t t t

t t t

V
V V V

V V

r V V V V V V V

V V V

  
 

       

    

  

 




.    (3.12) 

Proof: See Appendix B.   

From (3.11) and (3.12) we also get the following, whose proof is obvious. 

Corollary: The continuous time kernel dynamics are, from (3.11) 

1

ˆ ( ) ( )ˆln ( )
ˆ ˆ ˆ

t tV VdY
d Y dt dW

Y

 

 
    .       (3.13) 

From the proof of Proposition 2 in the appendix it follows that the dynamics in (3.13) define a 

( )
( , )

ˆ
tV

N dt dt



  random variable. Note that the random factor 

2 2

QdW dW  does not enter into 

the kernel, since the latter is derived by the ratio of the Q- to P- probabilities and the volatility 

shocks that do not affect the return cancel out.  

Equation (3.11) is consistent with the exponential kernel in Theorem 1 of Bakshi and Madan 

(2004, p. 1949), which was assumed to correspond to the power utility of a representative 

investor. In our notation their kernel is given by 
0 1exp( )P

t t t tz   , which is also the form 

adopted on an ad hoc basis by Rosenberg and Engle (2002, p. 347) for GARCH dynamics. The 
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coefficient 1t , which corresponds to the RRA of the representative investor, is equal to 1̂   and 

is time-and state-varying.  

Except for the change in notation, the P -dynamics in (3.1)-(3.2) are generalized versions of the 

ones used in Fournier and Jacobs (2020, p. 1122). The simplicity of the risk neutralization of 

Proposition 1 should be contrasted with the approach used in this latter study, which derives the 

Q -distribution in an equilibrium argument that includes a monopolistic market maker in the 

option market and a third state variable consisting of the inventory to wealth ratio of that agent. 

This state variable enters into the risk neutral dynamics shown in equations (35)-(37) of that 

study, which should be compared to the risk neutralization under SD of the model shown in 

equation (3.14b) below, whose P -dynamics are identical to those of the Fournier-Jacobs 

equations (1) and (2). See, in particular, their equation (36), in which [ ]Q

tE dV includes the 

inventory to wealth ratio, which must be estimated from the option market. Unfortunately, 

numerical comparisons between their results and ours cannot be done with the material presented 

in their study.     

Such a comparison, though, is feasible for the results of Jones (2003), who studied the S&P 100 

index and considered a variety of models starting with the modified Heston (1993) SV, termed 

the SQRT model,15 and generalized or modified it along several dimensions. The impact of our 

endogenous determination of volatility risk can best be judged by comparing its resulting Q -

dynamics with the ad hoc estimation of these same dynamics in the Jones study, by fitting to the 

observed option market data. Thus, omitting the time subscript, in the SQRT model we have 

0

2 2

1 2 1 2

( ) ,  ( ) ,  ( ) ( ),  

( )[ ( ) + 1 ( )) ] [ + 1 ]v

V r V V V V V

V V dW V dW V dW dW

    

     

    

  
.   (3.14a) 

Similarly, in Jones’ first extension, termed the CEV these dynamics become 

2 2 1
1 2

2 2

1 2

( ) ,  ( ) ,  ( )

( ) ,  ,    v v

V r V V V V

V V 

     


     

 

    

   


.    (3.14b) 

In Jones’ second extension, the 2GAM model, we have 

1 2

1

1 2

1 2

2

1 2 1 1 2 2

2 2 1
1 2

2 2

1 2

( ) ,  ( ) ,  ( )

( )[ ( ) + 1 ( ) ]

( ) ( ) ( ) ,     ( )
( ) ( )

V r V V V a bV

V V dW V dW V dW V dW

V
V V V V

V V

 


 

 

   

    


   

 

    

   

  


.    (3.14c)  

                                                           
15 In Heston (1993) only the Q -dynamics were presented, while the kernel was only derived in 2013, by 

Christoffersen et al (2013), for the case where ( )V V  . Jones’ SQRT model has ( )V r   . 
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Hence, the variance risk premium, reflecting the price of volatility risk, becomes in these three 

cases equal to ( ) vr     for SQRT, vV for the Heston model as in Christoffersen et al 

(2013), to 
( ) vr V

V

   
 for the CEV, and to 

1

1 2

1

2 2

1 2

( )

( ) ( )

V r

V V



 

 

 




 for 2GAM. This 

endogenous variance risk premium is appropriately redefined if the index risk premium r  in 

the Jones models is set equal to V  or V . For the Q -dynamics Jones replaces a bV by 

*a b V and leaves the other parameters unchanged. He also defines (p. 187) the implied price of 

variance risk as 
1 2

* *

2 2

1 2

( ) ( )

( )( ) ( )

b b V b b V

VV V
   

 



. The major economic difference from our 

endogenous SV variance risk premium is that the leverage effect and the equity risk premium are 

not taken into account in the equilibrium determination of the price of volatility risk, shown in 

Appendix C of the Jones study.16    

Tables 1, 2 and 3 below show the differences in option valuation between the endogenous 

volatility risk of the SD approach and the one derived by fitting the Q -dynamics of the SV 

model to the noisy S&P 100 index option market data under the SQRT, CEV and 2GAM models, 

respectively. In all three tables the P -parameters are the ones shown in Columns 2 and 4 of 

Table 1 of Jones (2003, p. 197), corresponding to the 1988-2000 time series. We use the format 

of Table 5 of Jones (2003, p. 207), with the tables showing the option values corresponding to a 

$100 price of the index, with strike prices equal to the ones shown on the top line; only OTM 

values are shown, puts on the right and calls on the left. The maturities T in days are the ones 

chosen by Jones, as are the starting volatilities 0V . In all tables the top panel termed NAE shows 

the values obtained by the closed form expressions of the Heston (1993) model using Jones’ 
*b

value. The bottom SD panel shows the option values according to the Q -dynamics in (3.14abc), 

corresponding to the endogenous price of volatility risk of the corresponding model with a 

constant risk premium. The Table 1 SD results were very similar when the risk premium was set 

proportional to the variance as in Christoffersen et al (2013). The Monte Carlo method was used 

for Tables 2 and 3. The standard errors were in all cases lower than the 2% mentioned by Jones 

(p. 207) for all but the very low priced deep OTM options.  

[Table 1 about here] 

The comparative results for the SQRT model are striking. Our fitted option values based on the 

empirically extracted 
*b value reproduce accurately Jones’ results and are in all cases above, and 

often far above, the theoretical frictionless SD prices. The differences between the NAE and SD 

prices are minor in the ATM and shortest maturity options, but they escalate dramatically as the 

options become deeper OTM for both calls and puts. More to the point, they increase sharply at 

                                                           
16 By contrast, the leverage effect appears in Fournier and Jacobs (2020, p. 1129). In fact, the first term in the 

variance risk premium of expression (29) in that paper is equal to the SD risk premium, without any need for the 

second term that involves the inventory to wealth ratio. 
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higher maturities, with the ATM 22-day option price under the 0.001 volatility higher by close to 

17% and the 66-day price higher by a stunning 50% under NAE than under SD.  

[Table 2 about here] 

[Table 3 about here] 

Tables 2 and 3 show the same relationships in the comparative results between the fitted NAE 

and the theoretically estimated SD values for the CEV and 2GAM models as with SQRT. To 

begin with, our NAE values reproduce very accurately the corresponding values of Jones’ Table 

5, with a few exceptions for the 66-day maturity where, however, the differences are not 

significant in terms of the standard errors. As with Table 1, in all cases the SD values are 

significantly lower than the corresponding NAE for all but the ATM options in the 5-day 

maturity. As for the comparison of the results for the three SV models, the comparative results in 

the SV panel of the three tables show major differences between the models, with the sign of the 

differences dependent on moneyness and maturity.      

A full explanation of these results requires significant empirical work with more recent data and 

lies beyond the scope of this paper. Although the Jones article does not specify how the option 

values were selected from the data, it is most probable that they were equal to the observed 

option bid-ask spread midpoint, as in most empirical option research. Further, the strong maturity 

effect that we observe in all tables most probably reflects the greater importance of volatility in 

longer maturity options. The large differences NAE-SD most probably imply that the SD prices 

lie below the observed bid prices in the option market in all cases. Although we do not have data 

for the S&P 100 option market bid-ask spreads, we do have some indications from Perrakis 

(2022, Figure 1) that for S&P 500 options the bid-ask spread is proportionately much higher for 

OTM and shorter maturity options. Still, the observed magnitude of the NAE-SD difference at 

ATM which was noted for SQRT is even higher under CEV and 2GAM than the 16.9% of the 

SQRT model at the 22-day maturity. At the same time the median observed bid-ask spread for 

the S&P 500 28-day maturity options was around 5% and never exceeded 10% over the 1990-

2000 time period.  

In fact the unreasonably high values implied by the NAE models were also noted by Jones 

(2003, pp. 207-208), who states that “the large positive drift in the CEV variance process implies 

very expensive options of all degrees of moneyness”. He also conjectured that these high option 

prices may have been due to misspecification of the volatility risk. A more likely explanation is 

the inconsistency of the option market data with the P -dynamics extracted from observed index 

return data. As noted in the introduction, the option market is an intermediated market that has 

never been modelled in detail but is assumed in the frictionless NAE models of Garleanu, 

Petersen and Poteshman (2009) and Fournier and Jacobs (2020) to consist of passive liquidity 

providers operating, respectively, in a perfectly competitive market and in a monopolistic market 

with exogenous bid-ask spreads. A major advantage of the SD endogenous determination of the 

variance risk premium in the SD approach is the fact that it allows us to test these intermediate 

market assumptions, as discussed in the last section of this paper.    
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IV. The SD bounds Under Stochastic Volatility and Jumps  

 

The SD bounds for index options under constant volatility jump diffusion were analyzed in detail 

in Perrakis (2019, pp. 45-61), in which it was shown that the market is incomplete even in that 

simple case, with the SD bounds converging to two different values. We expect, therefore, that a 

similar result will also prevail under SV. We use again the very general SV formulation in (3.1) 

and its discretized version (3.2) and augment them with independent Poisson jumps in the index 

return with intensity equal to and random log-amplitude J , whose distribution is given by 

21
ln( ) ( , )

2
j j jJ j D     , with [ln ],  1j

j E j e


    . Although this distribution is 

assumed normal in most empirical applications, we shall not adopt this assumption, which is not 

realistic for all but the very lengthy option maturities.17 Instead, we shall assume that there exists 

a minimum value min 0j  of the amplitude, which translates into a minimum value minJ    of 

the rate of return, at which the lognormal is truncated. In such a case the P -dynamics of the 

index in (3.1) become 

1

2 1 2

[ ( ) ] ( ) ( 1) ,   

( ) ( ) ,  ( )

t

t

dS
r V dt V dW j d

S

dV V dt V dW dW dW V dt

  

  

      

  

,       (4.1) 

Where   is a Poisson counting process with intensity . We shall also assume, as is reasonable, 

that max 1j  , or max 0J  . The discretized version of (4.1) now becomes 

2

[ ( ) ] ( )  with probability 1- t
,   

[ ( ) ] ( ) ( 1) with probability 

( ) ( )[ ( ) + 1 ( ) ]

t t t t

t t

t t t t

t t t t t t t t t t t

r V t V t
z

r V t V t j t

V V V dt V V t V t

    

    

     







  

      
  
         

     

.  (4.2) 

This SVJ model is the simplest and most parsimonious in terms of its jump component that has 

appeared in the literature. The derivation of its Q -dynamics can be extended with very little 

reformulation to more complex cases, when the intensity becomes a linear function of the 

variance or volatility. More complex, but still tractable with the approach adopted in this paper, 

is the inclusion of jumps into the volatility equation, for which the SD derivation of the bounds 

will change. Since parsimoniousness of a model is a desirable property, we shall not proceed 

beyond the SVJ in (4.1). The proofs will only be sketched, since SVJ is a straightforward 

combination of SV as presented in the previous section and the constant volatility jump diffusion 

SD bounds.  

To derive the Q -distribution(s) under SVJ we start from the model-free relations (2.3)-(2.4). The 

proof relies heavily on the constant volatility jump diffusion bounds under SD and is done 

                                                           
17 SD bounds also exist when the jump amplitude is allowed to be full lognormal, but they are no longer both risk 

neutral payoff expectations.   
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separately for the upper and lower bounds. At time T t  the martingale transformation of the 

upper bound ( )T t TU z  clearly does not involve the diffusion component, which stays the same, 

since there exists an h, such that for any t h  , the minimum outcome of the jump component 

is less than the minimum outcome of the diffusion component, or

min min( 1) ([ ( ) ] ( ) )T t T tj r V t V t           .. Hence, as shown in Perrakis (2019, p. 49) 

and omitting the terms of the form ( )o t  the  -probability in (2.4) becomes equal to 

min

( )

( 1) UT
T tV

j
t t





     , and the jump component is a mixture 

min

with probability

with probability

UT

UT

UT

U

T

j
j

j


 



 






 


, 

with mean amplitude   

  min1 ( ) ( ) 1U U UT
T T

UT UT

E j j


 
   

        
. The return (4.2) now becomes 

2

[ ( ) ( ) ] ( )  with prob. 1-( ) t
,   

[ ( ) ( ) ] ( ) ( 1) with prob. ( )

( ) ( )[ ( ) + 1 ( )
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T
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z
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V V V dt V V t V
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  

 

    

        
  
           

     ]T t

. (4.3) 

 Hence, ( , ) [( ) ] ( , )U
T t T t T t T t T T t T tC S V E S K C S V
        . A similar relation also holds for 

the lower bound ( , ) [( ) ] ( , )L

T t T t T t T t T T t T tC S V E S K C S V

        , for which risk 

neutralization is achieved by truncating the jump amplitude at the right tail, as in Perrakis (2019, 

pp. 51-52), yielding 
( )

( 1| )

L

T t T

L

T T

V

E j j j

  



  

  
 . 

The SVJ bounds can now be derived recursively for any t T as in (2.3), given the fact that the 

P -dynamics of the return are a convolution or mixture of two independent processes, the 

discretized bivariate diffusion of the previous section and the jump process as in (4.1)-(4.2). The 

key issue is the derivation of the martingale probabilities (2.4) for the mixed process. Applying 

induction given ( , ) ( , ) ( , )L U

t t t t t t t t t t t t t t t t t tC S V C S V C S V          , the probabilities (2.4) in 

the absence of a jump at t t  are found from the equilibrium relations (3.4), which still hold in 

modified version for the bivariate diffusion returns ,D t tz   

, , ,

1

, , ,

{ [ ( ) ( (1 ), )]},   { [ ( ) ( (1 ), )]}

subject to

[ ( ) ] ,   [(1 ) ( ) ] 1 

U L

t t D t t t t t D t t t t t t Dt t t t t D t t t tY Y

t t D t t t t D t t t D t t t

Max E Y z C S z V Min E Y z C S z V

E Y z S R E z Y z S

       



  

 

  

, .

 (4.4) 

yielding the diffusion bounds ( , )tD t tC S V and ( , )tD t tC S V  as in (3.6)-(3.8).  
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The final steps in this procedure are the incorporation of the jumps into (4.4) and the derivation 

of the limiting form of the bounds as the time partition 0t  . The next theoretical result of 

this paper is as follows. 

Proposition 3:  For any t T and for 0t   the admissible stochastic dominance option values

( , )t tC S V  for the SVJ model (4.1) lie in an interval of bounds [ ( , ), ( , )]t t t tC S V C S V defined in their 

discretized version in (4.5) -(4.7), which converge to a pair of option price lower and upper 

bounds given by the expectation of the payoff with the following Q -dynamics. 

1

1

2

1 2

[ ( ) ] ( ) ( 1) ,  (upper bound)

 [ ] ( ) ( 1) ,  (lower bound)
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 ,     (4.5b) 

Proof:  

We prove the result for the upper bound, with the proof for the lower bound following identical 

steps. Given ( , ) ( , )U

t t t t t t t t t t t tC S V C S V      , we treat the P -distribution of t tz  as a 

mixture, with probabilities 1- t of a bivariate diffusion return ,D t tz  and t of the jump 

( 1)j  . Hence, the problem (4.4) now becomes  

, ,

,

,

{ [ ( ) ( , )]}

(1 ) ( ) ( (1 ), )
{ }

( ) ( ), )

(1 ) ( , )
{

( ) ( ), )

U

t t t t t t t t t tY

U

t D t t t t t D t t t t

tY U

t D t t t t t t t

tD t t

tY U

t D t t t t t t t

Max E Y z C S V

t Y z C S z V
Max E

tY z C S j V

t C S V
Max E

tY z C S j V









   

   

  

  



   
 

   

  

 

}


 
 

.       (4.6) 

A similar formulation holds for the lower bound, by replacing
U

t tC  by 
L

t tC   and tDC by tDC .  
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Since these bounds are by construction convex within the interval ( , ]t t t , whenever a jump 

occurs the same argument used at T t about the jump components becoming dominant in the 

convolution holds here as well. It follows that the discrete time SVJ bounds become now 

expectations with the following index return dynamics for both upper and lower bounds, with the 

volatility updating common to both bounds    

[ ( ) ( ) ] ( )  with prob. 1-( ) t
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(4.7) 

As at T t , both intensity and amplitude of the jump component in the upper bound change at 

every time step if the risk premium is a function of volatility, while in the lower bound the 

intensity is unchanged from the P -dynamics but the amplitude is adjusted at every time step if 

the risk premium changes. Analytically, 
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 ,     (4.8a) 
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.        (4.8b) 

For 0t  the volatility term tends to the same limit (3.8) for both bounds, implying that the 

recursive bounds behave as in the constant volatility case and tend to (4.5ab), QED.  

Proposition 3 provides endogenous risk neutralization expressions for an SVJ model, defined 

within two bounds for the corresponding option values. The SVJ model is extremely flexible, 

insofar as it allows all forms of the risk premium that have appeared in the financial literature, 

constant as well as dependent on variance or volatility in an unspecified way. Although the jump 

process was assumed to have constant intensity, it can be easily extended with very little 

reformulation to allow the dependence of intensity on volatility, as assumed in several studies. 

Note, however, that for such a model to be meaningful this dependence must be established on 

the basis of the P -distribution. In the Q -dynamics (4.8ab) the dependence holds anyway, given 

that the option value jump intensity for the upper bound 
min

( )

( 1)Ut t
tV

j
t t


  

    in (4.8b) is 

obviously dependent on the risk premium, which in turn may be dependent on current volatility. 
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As already noted, the inclusion of jumps in the evolution of volatility as reflected in the second 

equation of (4.1) needs a re-examination of the proof of Proposition 1, since at the continuous 

time limit the jump components, when they occur, will become dominant in the derivation of the 

risk neutral volatility. Since this would obviously raise serious estimation problems in filtering 

out the parameters of the jumps in volatility, it will be left for future empirical research.    

Since the bounds (4.8ab) are based on SD, any efficient option price must lie within that interval. 

Otherwise, any risk averse investor holding the index and the riskless asset should purchase 

(write) the option if its price lies below (above) the interval. As for the determination of the 

efficient price within the SD bounds, this would depend on the aggregation of the pricing kernels 

of individual investors participating in the option market, whose risk aversion characteristics are 

unknown. The aggregation is also not necessarily constant within the maturity of the options. 

The last result of this paper describes these characteristics for the universe of CRRA investors 

who hold the index and the riskless asset and establishes a formal link between SD and NAE 

models.  

Consider an investor who maximizes recursively the expectation of terminal wealth at option 

expiration time T, whose utility function is 
1
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 , where we set the time partition equal to t . The Q -distribution is 

then
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, with 1( )T TF z  denoting the distribution of the return in (4.2).  

If the returns are independent and identically distributed (iid) then the allocation 
* * *(1 ( )) (1 )t t t t t t tE z R R      remains unchanged over all time points. In SVJ, however, the 

returns t tz  are Markovian but not iid. In such a case the FOC at t become, when maximizing 

1( )t tE W  with respect to t ,
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induction it can be shown that this recursive derivation is independent of wealth, as is common 

for such investors. 

                                                           
18 The terminal wealth can extend to any time T’>T without changing the results below.  
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The corresponding kernel 

*

1

*

1

( )

[( ) ]

T

t

T

t

t

R

E R


















 




 




 is also equal to 

[ ]

T

t T

S

E S








and is dependent on the RRA 

parameter  , which must be consistent with the SVJ bounds of Proposition 3. By definition, all 

risk averse investors no matter what their RRA will improve their expected utility if they adopt 

the appropriate policy that includes writing (purchasing) an overpriced (underpriced) option, as 

described below. Nonetheless, the correspondence between index holdings and adopted policy 

will not be one-to-one but will depend on the RRA. As with the constant volatility with jumps 

case in Ghanbari, Oancea and Perrakis (2021, p. 259),19 the SD bounds set an upper limit on the 

RRA of the investors who participate in the option market with one option position per unit 

index if the options are priced “correctly”. The SD lower bound and the Merton (1976) 

unsystematic jump risk case correspond to a risk neutral investor with an RRA of 0, so the RRA 

limit will come from the upper bound. This is formalized in the following result.  

Proposition 4: Consider an admissible equilibrium value ( , )t tC S V of an option under SVJ P -

dynamics as in (4.1), with ( , ) [ ( , ), ( , )]t t t t t tC S V C S V C S V  as in Proposition 2, as well as a set of 

CRRA investors defined by the size (0, )   of their RRA. In such a case there is a time- and 

maturity-dependent maximum RRA value for such investors in order to participate in the option 

market with one option per unit index, given by     

max

,

( ) ,

  ( 1)
( ),  [ ]

( )

Q Q

t t

t T Q Q

t t

t

V V

Max j j
E j E

E j






    

 
   






   
 

  
  

 

.    (4.9) 

Conversely, for any
ax

.

m

t T  the ratio
max

,t T




shows the number of index units per option position  

that the CRRA investor needs to hold if she is to participate in the option market. On the other 

hand, if there is an equilibrium corresponding to a “representative” CRRA investor within the 

bounds with 
ax

.(0, ]m

t T  , then the term within braces in the RHS of (4.9) shows the equilibrium 

price and the allocation of the premium to volatility and jump risk. 

Proof: See Appendix C.  

From (4.9) it is clear that the set
ax

.(0, ]m

t T  varies at every time point and is at the very least 

maturity-dependent even if we assume, as it often happens, that the volatility stays 

approximately constant for short maturities. This implies that the strong maturity effects noted 

                                                           
19 In that paper, however, the RRA upper limit was extracted by equating the SD upper bound to the Bates (1991) 

model, in which the index risk premium was endogenously determined by simultaneous equilibrium in index and 

option markets. Since, as discussed in Perrakis (2022), that model has not had much success empirically, we shall 

not carry out the corresponding exercise.    
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earlier in the empirically fitted SVJ Q -distributions of the Bakshi, Cao and Chen (1997) study 

are perfectly reasonable in our SD setup. Further, that setup also provides useful benchmarks for 

investors who are not of the CRRA type and whose holdings may include other risky 

investments if their implied kernel is monotone decreasing in the index, a necessary condition for 

no arbitrage as discussed earlier.20 Apart from that, our analysis did not impose any restrictions 

on the transition from P - to Q -dynamics, neither linearity of the volatility risk premium with 

respect to the variance as in Bates (1996, p. 74), nor restrictions on the Q -parameters as in Pan 

(2002, pp. 34-35).  

Tables 4 and 5 show the derived SVJ option bounds for call options for SV following the SQRT 

model shown in the previous section, respectively for two different long run mean variances set 

equal to 
0 0.0225V  and 0 0.01V  , and equal to the corresponding starting volatilities of 15% 

and 10%. Each table shows the bounds for two different levels of the total risk premium, three 

different maturities of one month, three months and one year, and five degrees of moneyness of 

0.90,0.95,1,1.05,1.1
K

S
 . The starting index level is 100 and the riskless rate 2%. The remaining 

parameters are broadly consistent with the parameter values of Bakshi, Cao and Chen (1997, 

Table 3), namely 2 21,  0.6,  [ln ] 0.05,  [ln ] (0.07)  j jE j j j Var j j j            .The 

Monte Carlo approach was used for the results, with the Merton (1976) unsystematic risk neutral 

jump risk used as a control variate.     

[Table 5 about here] 

[Table 6 about here] 

For the base case of a 4% risk premium our parameters imply 

0.08658 ( 0.06926 0.40.04877,  0.2,  )U U

U U              ., and similarly for 

the economically less interesting lower bound we get 0.115437L  .  

The tables show that the SVJ lower bound is in all cases very close to the Merton (1976) risk 

neutral value, which is an alternative lower bound that does not truncate the amplitude. In both 

tables the results also exhibit a significant smile effect, especially in the ITM call region, which 

corresponds to OTM puts. For the base case of three-month options (T=0.25) the implied 

volatilities (IV) are 0.2 and 0.16 for starting diffusion volatilities of 15% and 10% respectively, 

rising to 0.23 and 0.21 for 0.9
t

K

S
 . These results are consistent with the claimed “overpriced 

OTM puts” anomalies in several NAE studies, as discussed in the introduction. There is no 

overpricing but the OTM puts have higher IV’s because of the jump components, as claimed by 

Broadie, Chernov and Johannes (2009).    

                                                           
20 For a general risk averse investor the kernel depends on her wealth, which implies that for inference purposes it 

has to be standardized at one index unit. 
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The SVJ model is the “workhorse” of empirical option research, and the results of this section 

provide a template for empirical work that differs in major ways from previous studies. Such 

work starts from the estimation of the P -dynamics uniquely from the observed index returns, for 

which there is a long history of econometric work starting with Ait-Sahalia (2004). Once the P -

parameters are available Proposition 3 yields the Q -dynamics, whose explicit form implies that 

any path to option maturity in the discretized from of the P -dynamics is mirrored by 

corresponding paths in the two Q -bounds. The latter can then be extracted by Monte Carlo or by 

a more refined numerical approach that transcends the scope of this paper.  

The next step in the empirical work is the comparison of the SD bounds with the observed bid-

ask spread in the option market. There are strong indications from the SD studies in the presence 

of frictions that the frictionless SD bounds will not be consistent with the option market. As 

Constantinides, Jackwerth and Perrakis (2009) first documented, most option cross sections are 

not consistent with a monotone decreasing pricing kernel, a sine qua non of the SD approach 

and, as argued above, also of the NAE approach. The inconsistency manifests itself with non-

overlap or very little overlap of the frictionless SD bounds with the spread, which in many cases 

does not include the bid-ask midpoint, the universally used proxy for the frictionless option 

prices in NAE studies.  

In the rest of this section we give a brief description of the design of strategies that may exploit 

this non-overlap, as well as of the formal empirical tests of the ex post profitability of these 

strategies, which are also tests of the consistency of the intermediated market with the 

frictionless equilibrium results. Since there is reason to believe that in many and perhaps most 

cross sections there are options with little or no overlap between the SD bounds and the bid-ask 

spread that lies above them, we focus on strategies to exploit the mispricing in such cases. 

Equivalent strategies exist for all other cases of inconsistency between the SD bounds and the 

option market. Such strategies are carried out in the frictionless economy at all time points of the 

index path till option maturity, which also assume that the OT can rebalance her portfolio 

between the index and riskless asset accounts without incurring any costs. The strategies can be 

defined for any IT portfolio holdings of index and riskless asset, with the ex post empirical tests 

simply adding to the IT holdings the dynamically adjusted zero net cost portfolio involving the 

overpriced option. In our illustrations below we shall concentrate on the case described in 

Proposition 4, where IT holds a single index unit and the trader-specific Q -dynamics are given 

by (4.10) with 
ax

.(0, ]m

t T  . 

Suppose we observe call options in a number of cross sections of a given maturity, whose bid-

ask spread lies above the SD upper bound, or ( , , )bt tC C S K T . To exploit this mispricing OT 

adds at t to her index holdings of IT equal to tS a portfolio of the proceeds from the short call, 

allocated optimally between the riskless asset and the index in respective proportions t  and

1 t  as described in Perrakis (2019, p. 25). The position is closed at t t   at price 

( , , )t tC S K T
, with the upper bound derived from the trader-specific Q -dynamics (4.9)-(4.10). 
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At T this strategy yields an amount . [ (1 ) (1 )] ( , , )
T

T t T t t

bt t t t t

t

C R z R C S K T
 

 



 
 

  

 



    . 

These OT proceeds are cumulated in a portfolio at every time  for the set of times 

{ :  [ , ],  ( , , )}bt T C C S K T      as the index moves along the discretized path of its 

dynamics (4.2), with the position closed at    at the upper bound. ( , , )C S K T 
. For each 

   the allocation   is chosen so that at the lowest value of the return z  the short option 

position at the upper bound ( , , )C S K T 
is equal to 0. This portfolio’s composition is time- and 

state-dependent, and the quantity (1 ) (1 ) ( , , )
T

T T

bC R z R C S K T
 

  

      

 

 
 

  

 



 
    

 
  

is added at every point  of the IT return path. Hence, the OT initial investment is again 

equal to tS , while the final value is  

[ (1 ) (1 )] ( , , )
T

T T

T bS C R z R C S K T
 

  

      
  

 
 

  

 

 

 
     

 
  .    (4.11) 

 By construction, the time series of these OT returns in (4.11) in all cross sections in which the 

set   is non empty and there are call options with ( , , )bC C S K T  should stochastically 

dominate the index, a hypothesis that can be tested reliably by the Davidson-Duclos (2013) out-

of-sample and model-free test. If the test rejects the null of non-dominance then the option market 

data is inconsistent with the estimated P -dynamics. At the very least, the corresponding options 

should be removed from the cross sections before any attempt to extract frictionless Q -dynamics 

from option market data. Such an extraction should only use option prices that lie within the SD 

bounds.    

V. Summary and Conclusions   

As noted in the introduction, the main objective of this paper is to extend the SD option pricing 

paradigm to the frictionless world, which is the one studied by the overwhelming majority of 

empirical index option market researchers. A key element of this extension is the derivation of 

SD bounds in the case of SV, when the diffusion volatility is stochastic, which had already been 

recognized as an important element of the index return dynamics more than thirty years ago. This 

element, however, made the frictionless derivative markets incomplete in the dominant NAE 

paradigm. In that paradigm the index return dynamics were insufficient to define the prices of 

derivative contracts without additional assumptions, several of which were highly questionable 

and generated long lasting and ongoing controversies.  

As it turns out, the SD approach is by itself sufficient in order to derive a unique option price in 

continuous time, by extracting from the index returns an endogenous price of the volatility risk 

and the risk neutral return distribution. Proposition 1, the most important result of this paper, 

shows that under the SD assumptions the two recursively derived model free bounds that contain 

the efficient option price under SV dynamics converge to a single value even for the most 

general formulations of such dynamics that have appeared in earlier studies. If SV is then 
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combined with independent jumps with random amplitude and constant intensity and becomes a 

stochastic volatility-jump process or SVJ the risk neutral transformations of SD result in two 

boundary distributions described in Proposition 3, as with constant volatility diffusion,. We then 

end up with two boundary values for the option that should contain the efficient equilibrium 

option prices for SVJ index return dynamics according to SD. 

We argue that unique frictionless equilibrium option values within the bounds depend on the 

unobservable aggregation of trader preferences, which in turn depend on their asset holdings 

even for the simplest case of portfolios containing the index and a riskless bond. For the 

important special case of a CRRA trader we derive from the SD option upper bound a 

corresponding upper bound on the RRA in order to participate in the option market with one 

option position per index unit. We also derive for that CRRA trader the valuation of the volatility 

and jump risks when trading within the SD bounds.  

We show how such a CRRA trader may exploit in the frictionless market an observed option 

price available for trading that lies outside the SD bounds. For these cases we derive dynamic 

strategies tailored to a particular CRRA investor that allocate efficiently the proceeds from the 

mispriced option to the index and the riskless asset account. Most importantly, we also show 

how to subject such strategies to ex post out-of-sample profitability tests using only the 

observable path of the index to option expiration. If these tests show that the returns from the 

mispriced option when added to the index create a stochastically dominant position vis-à-vis the 

index holdings then we may conclude that the observed option market prices are inconsistent 

with the index dynamics and cannot be used in frictionless option pricing models. 

The frictionless market strategies can also be applied to a market with frictions, although in such 

a case closing an open position requires the use of the appropriate bid or ask price, rather than 

the frictionless bound. Alternatively, the position can be left open till maturity, as in 

Constantinides et al (2011). More interesting empirically, however, is the analysis of the 

intermediate market and an interpretation of the disconnection between the estimated P-

dynamics and the observed prices in the option market whenever a non-overlap between SD 

bounds and the bid-ask spread. In such cases the SVJ bounds on efficient frictionless option 

prices may also be used in order to evaluate the positions of the market makers or dealers in the 

intermediate market. These dealers provide the residual liquidity in order to close the market for 

each traded option. The liquidity file data that allocates the positions to dealers and non-dealer 

end users is available and allows us to value the net exposure of the dealers within the SD 

bounds. Adding to this net exposure value the riskless proceeds of the dealer group as a whole 

from intermediating the end user transactions is certainly a useful exercise in order to assess the 

perfect competition assumption of the dealer market. Such an assumption has never been tested 

but should be a priori suspicious in view of the informational asymmetry between end user 

traders and market makers.         

Appendix A: Proof of Lemma 1 

The proof of Lemma 1, which was initially given by Ritchken (1985), will only be sketched, 

since it is also given in Perrakis (2019, pp. 30-36). It is based on a linear programming (LP) 
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formulation of the equilibrium conditions (3.4), which relies on the monotonicity of the kernel 

( )t t tY z 
. As in (3.5), define ˆ [ ( ) ],   1,..., ,i t jz E z j i i n    and similarly define 

, ,

ˆˆ ˆ ˆ[ ( ( ), ( , )) ( ) ],  [ ( ( ), ( , )) ( ) ]i t t t tt t t t t i i t t t t t t t iC E C S V z z C E C S V z z                 (A.1)     

Let also
1 1 2 1 2 1( ( )), = ( ( )) ( ( )),...., = ( ( )) ( ( )) t t t t t t t t t n t t t n t t t nY z Y z Y z Y z Y z               . The 

problem (3.4) then takes the following form, with the dependence on   suppressed for notational 

simplicity.  
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1 1

1
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1 1
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i i t t i i t t

i j

j n i n

j i i t t i

j i

n
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max C C

Y R z i



   

 

 




 

 

      

 

 

.    (A.2) 

 

The solution yields (3.6) and (3.7), from which (3.5) follows obviously, since 

[ ( ( ), ( , ))] ( , ) [ ( ( ), ( , ))]L U

t tt t t t t t t t t t t t t tE C S V C S V E C S V             , QED.  

Appendix B: Proof of Proposition 2 

At time t and for the period t we have, from the proof of Proposition 1,  

ˆPr [ ,  ( ) ( ) ( ) ]
ˆ ( )ˆ( )
ˆ ( )

Pr [ ,  ( ) ( ) ( ) ]
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t t t t t t t t

P t t
t t
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S
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S
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 
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
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 
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.   (B.1) 

At the limit, setting ln[ ] ,   ln[ ]Q Q P Pt t
t t t t

t t

S S
z z

S S
 

 
  , we have in approximating their convergence 

values, 

ln[ ] ( 0.5 , ( )),   ln[ ] ( ( ) 0.5 , ( ))

ˆ( ( ), ( ) ( )),   ( ( ), ( ) ( ))

Q Q P Pt t
t t t t t t t

t t
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  

     

 

 
    

 

 . (B.2) 

Since both P- and Q- distributions depend on a single random variable P

t tz 
or Q

t tz 
, the 

probabilities are normal and must be equal for the return and volatility dynamics. It follows, 

therefore, that  
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2 2 2
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Standardizing them, we define 
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In turn, these yield 

2 2 2 2( ) ( ) ( ) ( )
exp( ) exp( ),   exp( ) exp( )

2 2 2 2

P P P P Q Q Q Q

s s v v s s v vz z z z      
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It follows then immediately that 
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It can be easily seen that P Q  , and from (B.1) we have 
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QED. 
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Appendix C: Proof of Proposition 4  

The kernel 
[ ]

T

t T

S

E S








is obviously monotone decreasing in TS , from which it follows that the 

implied boundaryQ -distributions are given by (2.4).  In such a case the upper bound is the same 

as the constant volatility jump diffusion, in which the key  -probability is equal to 

min

( )

( 1) Ut
tV

j
t t





    .  For (4.9) we set by changing the notation ,exp( )t t

D t t

t

S
z J

S


  . Marginal 

analysis of borrowing $1 and investing in the index should in equilibrium yield 

,

, , ,

[ [exp( )]] 0

{exp[ ( )]exp( )} {exp[ ( )]}

t t t D t t

t D t t D t t t D t t

E S z J r

E z J z J rE z J



 



 

  

    
 
       

 . Since the two random 

terms are independent, the second line becomes  

, ,{exp[(1 ) ]} {exp[(1 ) )]} {exp( ) {exp( )}t D t t t t D t t tE z E J rE z E J          

 from which we get (4.9) after setting exp( )J j    , QED.  
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Table 1: SV-SQRT 

The table shows the option values corresponding to a $100 price of the S&P 100 index for the shown values of 

volatility and maturity in days under SD and NAE, with strike prices equal to the ones shown on the top line; only 

OTM values are shown, puts on the right and calls on the left. The SV model follows the SQRT format in both 

cases, with the P-parameters corresponding to those shown in Table 1 of Jones (2003, p. 197).  

   80 90 95 99 100 101 105 110 120 

Pricing T V0          

NAE 5 0.0010 0.0031 0.2392 1.0036 2.3866 2.8664 2.4015 1.0629 0.2966 0.0093 

0.0001 -0.0000 0.0001 0.0221 0.5266 0.9276 0.4974 0.0067 0.0000 0 

22 0.0010 0.6273 2.4116 4.0738 5.8445 6.3500 5.8805 4.2451 2.7076 0.9550 

0.0001 0.0022 0.1318 0.6344 1.7618 2.1995 1.7091 0.4616 0.0391 0.0000 

66 0.0010 4.4088 7.9112 10.1449 12.1620 12.6976 12.2455 10.5577 8.7077 5.7872 

0.0001 0.4204 1.6747 2.9908 4.5239 4.9831 4.4742 2.7641 1.3361 0.2085 

SD 5 0.0010 0.0021 0.2059 0.9269 2.2859 2.7641 2.2997 0.9806 0.2551 0.0064 

0.0001 -0.0000 0.0000 0.0182 0.4987 0.8967 0.4691 0.0049 0.0000 0 

22 0.0010 0.3372 1.7308 3.2301 4.9303 5.4284 4.9557 3.3491 1.9256 0.5109 

0.0001 0.0006 0.0706 0.4503 1.4810 1.9114 1.4246 0.2883 0.0116 0.0000 

66 0.0010 1.5282 3.9234 5.7771 7.6079 8.1145 7.6406 5.9357 4.2140 1.9365 

0.0001 0.0819 0.6776 1.6204 2.9766 3.4217 2.9132 1.3553 0.3754 0.0091 

Table 2: SV-CEV 

The table shows the option values corresponding to a $100 price of the S&P 100 index for the shown values of 

volatility and maturity in days under SD and NAE, with strike prices equal to the ones shown on the top line; only 

OTM values are shown, puts on the right and calls on the left. The SV model follows the CEV format in both cases, 

with the P-parameters corresponding to those shown in Table 1 of Jones (2003, p. 197).  

   
80 90 95 99 100 101 105 110 120 

Pricing T V0 

         

NAE 5 0.0010 0.0177 0.3484 1.1250 2.4467 2.9040 2.4174 1.0108 0.2339 0.0027 

0.0001 0.0000 0.0001 0.0231 0.5290 0.9314 0.5019 0.0074 0.0000 0.0000 

22 0.0010 1.2649 3.1043 4.6443 6.2584 6.7192 6.2049 4.3912 2.6640 0.7619 

0.0001 0.0075 0.1722 0.6958 1.8233 2.2604 1.7654 0.4920 0.0430 0.0000 

66 0.0010 7.0404 10.2110 12.1612 13.9142 14.3917 13.8710 11.9030 9.7032 6.1833 

0.0001 0.9874 2.4503 3.7795 5.2594 5.6939 5.1595 3.3225 1.7094 0.3064 

SD 5 0.0010 0.0136 0.2988 1.0366 2.3383 2.7973 2.3114 0.9267 0.1971 0.0017 

0.0001 0.0000 0.0000 0.0180 0.4994 0.8982 0.4721 0.0056 0.0000 0.0000 

22 0.0010 0.7621 2.2612 3.6675 5.2295 5.6859 5.1717 3.4064 1.8330 0.3635 

0.0001 0.0016 0.0851 0.4710 1.4977 1.9273 1.4401 0.2988 0.0122 0.0000 

66 0.0010 2.9989 5.3451 7.0148 8.6407 9.0867 8.5548 6.6101 4.6035 1.9438 

0.0001 0.1710 0.8350 1.7637 3.0759 3.5089 2.9881 1.3868 0.3774 0.0077 
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Table 3: SV-2GAM 

The table shows the option values corresponding to a $100 price of the S&P 100 index for the shown values of 

volatility and maturity in days under SD and NAE, with strike prices equal to the ones shown on the top line; only 

OTM values are shown, puts on the right and calls on the left. The SV model follows the 2GAM format in both 

cases, with the P-parameters corresponding to those shown in Table 1 of Jones (2003, p. 197).  

   80 90 95 99 100 101 105 110 120 

Pricing T V0 
         

NAE 5 0.0010 0.0450 0.4261 1.1706 2.4092 2.8425 2.3327 0.8719 0.1401 0.0001 

0.0001 0.0000 0.0002 0.0259 0.5354 0.9347 0.5028 0.0071 0.0000 0.0000 

22 0.0010 1.2659 2.8015 4.1262 5.5678 5.9773 5.4259 3.5031 1.7617 0.2231 

0.0001 0.0153 0.2123 0.7493 1.8614 2.2878 1.7855 0.4892 0.0387 0.0000 

66 0.0010 3.9155 6.1937 7.7783 9.3130 9.7296 9.1721 7.1177 4.9606 2.0084 

0.0001 1.0704 2.4376 3.6834 5.0892 5.5051 4.9551 3.0681 1.4409 0.1591 

SD 5 0.0010 0.0338 0.3634 1.0703 2.2900 2.7246 2.2165 0.7872 0.1119 0.0000 

0.0001 0.0000 0.0001 0.0199 0.4998 0.8954 0.4676 0.0051 0.0000 0.0000 

22 0.0010 0.8094 2.0727 3.2879 4.6889 5.1130 4.5656 2.7081 1.1583 0.0766 

0.0001 0.0028 0.0919 0.4703 1.4778 1.9005 1.4102 0.2775 0.0099 0.0000 

66 0.0010 2.0267 3.7946 5.1865 6.6340 7.0488 6.4881 4.4845 2.5534 0.5219 

0.0001 0.1768 0.7837 1.6584 2.9354 3.3642 2.8413 1.2590 0.3110 0.0038 
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Table 4: SVJ for V0 =0.0225 
 

The table shows the call option values under the indicated conditions, for parameters ζ=1, λ=0.6, log-amplitude 

mean and volatility equal to -0.05 and 0.07 respectively, and for S=100 and r=0.02.  

 

 
Risk  

premium 
K T 

Risk Neutral  

(Closed Form)  

Lower  

Bound  

Risk  

Neutral  

Upper  

Bound  

Upper Bound  

(Jmin=0)  

0.04  

90  

1M  10.2135  10.2122  10.2182  10.3873  10.5068  

3M  10.8702  10.8610  10.8766  11.2888  11.6815  

1Y  13.9123  13.8624  13.8941  14.9039  16.6697  

95  

1M  5.5104  5.4963  5.5114  5.7109  5.7886  

3M  6.7024  6.6787  6.7076  7.1544  7.4320  

1Y  10.4093  10.3365  10.3905  11.5015  12.9711  

100  

1M  1.9142  1.8910  1.9161  2.0573  2.0935  

3M  3.4649  3.4218  3.4634  3.8472  4.0169  

1Y  7.4533  7.3663  7.4334  8.5613  9.7229  

105  

1M  0.3303  0.3113  0.3288  0.3736  0.3835  

3M  1.4291  1.3836  1.4277  1.6696  1.7556  

1Y  5.0862  4.9891  5.0723  6.1222  6.9921  

110  

1M  0.0268  0.0201  0.0261  0.0332  0.0328  

3M  0.4545  0.4211  0.4562  0.5650  0.5976  

1Y  3.2976  3.2069  3.2939  4.1814  4.8071  

0.06  

90  

1M  10.2135  10.2033  10.2182  10.4650  10.6533  

3M  10.8702  10.8297  10.8766  11.4871  12.0893  

1Y  13.9123  13.7806  13.8941  15.3549  18.0799  

95  

1M  5.5104  5.4693  5.5114  5.8018  5.9288  

3M  6.7024  6.6256  6.7076  7.3719  7.8056  

1Y  10.4093  10.2364  10.3905  11.9935  14.3143  

100  

1M  1.9142  1.8618  1.9161  2.1244  2.1866  

3M  3.4649  3.3636  3.4634  4.0336  4.3088  

1Y  7.4533  7.2558  7.4334  9.0614  10.9504  

105  

1M  0.3303  0.3010  0.3288  0.3966  0.4125  

3M  1.4291  1.3423  1.4277  1.7915  1.9363  

1Y  5.0862  4.8792  5.0723  6.5964  8.0620  

110  

1M  0.0268  0.0192  0.0261  0.0342  0.0362  

3M  0.4545  0.4008  0.4562  0.6192  0.6813  

1Y  3.2976  3.1044  3.2939  4.6046  5.6919  

3M  0.0863  0.0635  0.0908  0.1068  0.1092  

1Y  1.6310  1.5621  1.6375  2.0927  2.2476  
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Table 5: SVJ for V0 =0.01 
 

The table shows the call option values under the indicated conditions, for parameters ζ=1, λ=0.6, log-amplitude 

mean and volatility equal to -0.05 and 0.07 respectively, and for S=100 and r=0.02.  

 

 

Risk  

premium 
K T 

Risk Neutral 

(Closed Form)  

Lower 

Bound  

Risk 

Neutral  

Upper 

Bound  

Upper Bound 

(Jmin=0)  
        

0.04  

90  

1M  10.1931  10.1924  10.1968  10.3702  10.4889  

3M  10.6378  10.6351  10.6454  11.0962  11.4904  

1Y  12.8637  12.8229  12.8494  14.0651  15.8816  

95  

1M  5.3267  5.3148  5.3279  5.5454  5.6258  

3M  6.1257  6.1011  6.1306  6.6535  6.9323  

1Y  8.9851  8.9119  8.9718  10.3752  11.8248  

100  

1M  1.3602  1.3300  1.3618  1.5153  1.5498  

3M  2.5466  2.4904  2.5465  2.9871  3.1426  

1Y  5.7380  5.6301  5.7245  7.1469  8.2249  

105  

1M  0.0759  0.0577  0.0753  0.0949  0.0974  

3M  0.6249  0.5692  0.6267  0.8273  0.8826  

1Y  3.2716  3.1432  3.2660  4.5075  5.2427  

110  

1M  0.0051  0.0004  0.0049  0.0055  0.0058  

3M  0.0863  0.0592  0.0908  0.1282  0.1376  

1Y  1.6310  1.5112  1.6375  2.5449  2.9981  

0.06  

90  

1M  10.1931  10.1872  10.1968  10.4491  10.6364  

3M  10.6378  10.6096  10.6454  11.3132  11.9164  

1Y  12.8637  12.7377  12.8494  14.5743  17.4077  

95  

1M  5.3267  5.2831  5.3279  5.6449  5.7758  

3M  6.1257  6.0345  6.1306  6.9109  7.3428  

1Y  8.9851  8.7808  8.9718  10.9841  13.3063  

100  

1M  1.3602  1.2933  1.3618  1.5902  1.6496  

3M  2.5466  2.4075  2.5465  3.2076  3.4627  

1Y  5.7380  5.4664  5.7245  7.7887  9.5853  

105  

1M  0.0759  0.0536  0.0753  0.1035  0.1102  

3M  0.6249  0.5280  0.6267  0.9355  1.0367  

1Y  3.2716  2.9746  3.2660  5.1028  6.3984  

110  

1M  0.0051  0.0003  0.0049  0.0063  0.0061  

3M  0.0863  0.0517  0.0908  0.1505  0.1728  

1Y  1.6310  1.3740  1.6375  3.0311  3.8810  

 

 


